Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Amelie Haugg - , Universität Zürich, Universität Wien (Autor:in)
  • Fabian M. Renz - , Universität Wien (Autor:in)
  • Andrew A. Nicholson - , Universität Wien (Autor:in)
  • Cindy Lor - , Universität Wien (Autor:in)
  • Sebastian J. Götzendorfer - , Universität Wien (Autor:in)
  • Ronald Sladky - , Universität Wien (Autor:in)
  • Stavros Skouras - , University of Bergen (Autor:in)
  • Amalia McDonald - , University of Virginia (Autor:in)
  • Cameron Craddock - , University of Texas at Austin (Autor:in)
  • Lydia Hellrung - , Universität Zürich (Autor:in)
  • Matthias Kirschner - , Universität Zürich, McGill University (Autor:in)
  • Marcus Herdener - , Universität Zürich (Autor:in)
  • Yury Koush - , Yale University (Autor:in)
  • Marina Papoutsi - , University College London, IXICO plc (Autor:in)
  • Jackob Keynan - , Tel Aviv University (Autor:in)
  • Talma Hendler - , Tel Aviv University (Autor:in)
  • Kathrin Cohen Kadosh - , University of Surrey (Autor:in)
  • Catharina Zich - , University of Oxford (Autor:in)
  • Simon H. Kohl - , Forschungszentrum Jülich (Autor:in)
  • Manfred Hallschmid - , Eberhard Karls Universität Tübingen, Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Jeff MacInnes - , University of Washington (Autor:in)
  • R. Alison Adcock - , Duke University (Autor:in)
  • Kathryn C. Dickerson - , Duke University (Autor:in)
  • Nan Kuei Chen - , University of Arizona (Autor:in)
  • Kymberly Young - , University of Pittsburgh (Autor:in)
  • Jerzy Bodurka - , Laureate Institute for Brain Research, University of Oklahoma (Autor:in)
  • Michael Marxen - , Klinik und Poliklinik für Psychiatrie und Psychotherapie, Technische Universität Dresden (Autor:in)
  • Shuxia Yao - , University of Electronic Science and Technology of China (Autor:in)
  • Benjamin Becker - , University of Electronic Science and Technology of China (Autor:in)
  • Tibor Auer - , University of Surrey (Autor:in)
  • Renate Schweizer - , Deutsches Primatenzentrum – Leibniz-Institut für Primatenforschung (Autor:in)
  • Gustavo Pamplona - , Asylum for the Blind Foundation (Autor:in)
  • Ruth A. Lanius - , Western University (Autor:in)
  • Kirsten Emmert - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Sven Haller - , Uppsala University (Autor:in)
  • Dimitri Van De Ville - , École Polytechnique Fédérale de Lausanne, Universität Genf (Autor:in)
  • Dong Youl Kim - , Korea University (Autor:in)
  • Jong Hwan Lee - , Korea University (Autor:in)
  • Theo Marins - , Instituto D'Or de Pesquisa e Ensino (Autor:in)
  • Fukuda Megumi - , RIKEN (Autor:in)
  • Bettina Sorger - , Maastricht University (Autor:in)
  • Tabea Kamp - , Maastricht University (Autor:in)
  • Sook Lei Liew - , University of Southern California (Autor:in)
  • Ralf Veit - , Eberhard Karls Universität Tübingen, Deutsches Zentrum für Diabetesforschung (DZD e.V.), Max Planck Institute for Biological Cybernetics (Autor:in)
  • Maartje Spetter - , University of Birmingham (Autor:in)
  • Nikolaus Weiskopf - , Max-Planck-Institut für Kognitions- und Neurowissenschaften, Universität Leipzig (Autor:in)
  • Frank Scharnowski - , Universität Zürich, Universität Wien (Autor:in)
  • David Steyrl - , Universität Zürich, Universität Wien (Autor:in)

Abstract

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.

Details

OriginalspracheEnglisch
Aufsatznummer118207
FachzeitschriftNeuroImage
Jahrgang237
PublikationsstatusVeröffentlicht - 15 Aug. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 34048901
ORCID /0000-0001-8870-0041/work/142251349

Schlagworte

Schlagwörter

  • Functional MRI, Learning, Machine learning, Mega-analysis, Neurofeedback, Real-time fMRI