Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross sectional cohort ...

Publikation: Sonstige VeröffentlichungSonstigesBeigetragen

Beitragende

  • Christina Pamporaki - , Medizinische Klinik und Poliklinik III (Autor:in)
  • Annika M.A. Berends - , University Medical Center Groningen (Autor:in)
  • Angelos Filippatos - , Institut für Leichtbau und Kunststofftechnik (ILK), Grand Challenge Lab Dresdner Zentrum für Intelligente Materialien (Autor:in)
  • Tamara Prodanov - , National Institutes of Health (NIH) (Autor:in)
  • Leah Meuter - , National Institutes of Health (NIH) (Autor:in)
  • Alexander Prejbisz - , Cardinal Stefan Wyszynski Institute of Cardiology (Autor:in)
  • Felix Beuschlein - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Martin Fassnacht - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Henri J.L.M Timmers - , Radboud University Nijmegen (Autor:in)
  • Svenja Nölting - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Kaushik Abhyankar - , Institut für Leichtbau und Kunststofftechnik (ILK) (Autor:in)
  • Georgiana Constantinescu - , Medizinische Klinik und Poliklinik III (Autor:in)
  • Carola Kunath - , Technische Universität Dresden (Autor:in)
  • Robbert J. de Haas - , University of Groningen (Autor:in)
  • Katharina Wang - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Hanna Remde - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Stefan R. Bornstein - , Medizinische Klinik und Poliklinik III (Autor:in)
  • Andrzeij Januszewicz - , Cardinal Stefan Wyszynski Institute of Cardiology (Autor:in)
  • Mercedes Robledo - , Spanish National Cancer Research Center, Madrid (Autor:in)
  • Jacques W.M. Lenders - , Technische Universität Dresden (Autor:in)
  • Michiel N. Kerstens - , University Medical Center Groningen (Autor:in)
  • Karel Pacak - , National Institutes of Health (NIH) (Autor:in)
  • Graeme Eisenhofer - , Medizinische Klinik und Poliklinik III (Autor:in)

Abstract

Background: Pheochromocytomas and paragangliomas (PPGL) have up to 20% rate of metastatic disease that cannot be reliably predicted. This study prospectively assessed whether the dopamine metabolite, methoxytyramine, might predict metastatic disease, whether predictions might be improved using machine learning models that incorporate other features and how ML-based predictions compare to predictions by specialists in the field. Methods: In this machine learning modelling study we used cross-sectional cohort data from the PMT trial, based in Germany, Poland, and the Netherlands, to prospectively examine the utility of methoxytyramine to predict metastatic disease in 267 patients with pheochromocytomas and paragangliomas and positive biochemical test results at initial screening. Another retrospective dataset from 493 patients with PPGL enrolled under clinical protocols in National Institutes of Health (00-CH-0093) and the Netherlands (PRESCRIPT trial), was used to train and validate machine learning models ...

Details

OriginalspracheEnglisch
Herausgeber (Verlag)Zenodo
PublikationsstatusVeröffentlicht - 19 März 2023
Peer-Review-StatusNein
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.OtherContribution

Externe IDs

ORCID /0000-0003-0311-1745/work/138951630
ORCID /0000-0003-0311-1745/work/138951575

Schlagworte