Prediction of epileptic seizures using multi-layer delay-type Discrete Time Cellular Nonlinear Networks (DTCNN) - Long-term studies
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In previous publications it has been shown that the prediction algorithm for multi-layer delay-type DTCNN may be used for the analysis of EEG-signals in order to find precursors of impending epileptic seizures. It has been stated that the application of time efficient training algorithms together with the consideration of symmetric templates lead to a significant decrease of the calculation complexity, allowing the analysis of long-term recordings of EEG-signals. In this contribution EEG-data, covering a total time of 6 days, were studied, applying the BFGS (Broiden-Fletcher-Goldfarb-Shanno) training method. To accomplish a very effective procedure, several symmetries have been tested and template structures leading to higher processing speed and optimal results have been implemented for the long-term studies. Distinct changes occuring before the onsets of impending seizures in the used data set were observed for different prediction parameters.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 25 |
Seiten (von - bis) | 204-210 |
Seitenumfang | 7 |
Fachzeitschrift | Proceedings of SPIE - The International Society for Optical Engineering |
Jahrgang | 5839 |
Publikationsstatus | Veröffentlicht - 2005 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | Bioengineered and Bioinspired Systems II |
---|---|
Dauer | 9 - 11 Mai 2005 |
Stadt | Seville |
Land | Spanien |
Externe IDs
ORCID | /0000-0001-7436-0103/work/173513971 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- CNN, Discrete time networks, Epilepsy, Multi-layer, Nonlinear prediction, Seizure prediction