Prediction of epileptic seizures using multi-layer delay-type Discrete Time Cellular Nonlinear Networks (DTCNN) - Long-term studies

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Christian Niederhöfer - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Ronald Tetzlaff - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

In previous publications it has been shown that the prediction algorithm for multi-layer delay-type DTCNN may be used for the analysis of EEG-signals in order to find precursors of impending epileptic seizures. It has been stated that the application of time efficient training algorithms together with the consideration of symmetric templates lead to a significant decrease of the calculation complexity, allowing the analysis of long-term recordings of EEG-signals. In this contribution EEG-data, covering a total time of 6 days, were studied, applying the BFGS (Broiden-Fletcher-Goldfarb-Shanno) training method. To accomplish a very effective procedure, several symmetries have been tested and template structures leading to higher processing speed and optimal results have been implemented for the long-term studies. Distinct changes occuring before the onsets of impending seizures in the used data set were observed for different prediction parameters.

Details

OriginalspracheEnglisch
Aufsatznummer25
Seiten (von - bis)204-210
Seitenumfang7
Fachzeitschrift Proceedings of SPIE - The International Society for Optical Engineering
Jahrgang5839
PublikationsstatusVeröffentlicht - 2005
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelBioengineered and Bioinspired Systems II
Dauer9 - 11 Mai 2005
StadtSeville
LandSpanien

Externe IDs

ORCID /0000-0001-7436-0103/work/173513971

Schlagworte

Schlagwörter

  • CNN, Discrete time networks, Epilepsy, Multi-layer, Nonlinear prediction, Seizure prediction