Predicting organoid morphology through a phase field model: Insights into cell division and lumenal pressure

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sakurako Tanida - , The University of Tokyo (Autor:in)
  • Kana Fuji - , The University of Tokyo (Autor:in)
  • Linjie Lu - , Université de Strasbourg (Autor:in)
  • Tristan Guyomar - , Université de Strasbourg (Autor:in)
  • Byung Ho Lee - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Alf Honigmann - , Exzellenzcluster PoL: Physik des Lebens, Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Anne Grapin-Botton - , Max Planck Institute of Molecular Cell Biology and Genetics, Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Daniel Riveline - , Université de Strasbourg (Autor:in)
  • Tetsuya Hiraiwa - , The University of Tokyo, National University of Singapore, Academia Sinica - Institute of Physics (Autor:in)
  • Makiko Nonomura - , Nihon University (Autor:in)
  • Masaki Sano - , The University of Tokyo, Shanghai Jiao Tong University (Autor:in)

Abstract

Organoids are ideal systems to predict the phenotypes of organs. However, there is currently a lack of understanding regarding the generalized rules that enable use of simple cellular principles to make morphological predictions of entire organoids. Therefore, we employed a phase field model with the following basic components: the minimum conditions for the timing and volume of cell division, lumen nucleation rules, and lumenal pressure. Through our model, we could compute and generate a myriad of organoid phenotypes observed till date. We propose morphological indices necessary to characterize the shapes and construct phase diagrams and show their dependencies on proliferation time and lumen pressure. Additionally, we introduced the lumen-index parameter, which helped in examining the criteria to maintain organoids as spherical structures comprising a single layer of cells and enclosing an intact lumen. Finally, we predict a star-like organoid phenotype that did not undergo differentiation, suggesting that the volume constraint during cell division may determine the final phenotype. In summary, our approach provides researchers with guidelines to test the mechanisms of self-organization and predict the shape of organoid.

Details

OriginalspracheEnglisch
Aufsatznummere1012090
FachzeitschriftPLOS computational biology
Jahrgang21
Ausgabenummer8
PublikationsstatusVeröffentlicht - Aug. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0475-3790/work/190571450