Predicting Energy Consumption with StreamMine3G

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

Abstract

In this paper, we present our approach on solving the DEBS Grand Challenge using StreamMine3G, a distributed, highly scalable, elastic and fault tolerant ESP system. We will provide an overview about the system architecture of Stream-Mine3G and implementation details of an application aimed at consumption prediction and outlier detection. Using our elastic approach, we can provide an accurate prediction as we can keep a practically unbounded history able to deal with high volume, highly fluctuating workloads. Our system also provides techniques for dealing with incomplete data in the source stream, which is a common problem when processing data from a large number of sources. Finally, we provide performance measurements showing that we are able to process the dataset given as part of the 2014 DEBS Challenge (135 GB) at a throughput of up to 40 kEvents/s.

Details

OriginalspracheEnglisch
Seiten270-275
Seitenumfang6
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa

Konferenz

Titel8th ACM International Conference on Distributed Event-Based Systems (DEBS '14), ACM, 2014
KurztitelDEBS'14
Veranstaltungsnummer
Dauer26 - 29 Mai 2014
BekanntheitsgradInternationale Veranstaltung
Ort
StadtNew York
LandUSA/Vereinigte Staaten

Externe IDs

Scopus 84903196373

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Algorithms, Design, Reliability, Complex Event Processing, CEP, Event Stream Processing, ESP, Scalability, Migration, State Management, Fault Tolerance