Predicting Energy Consumption with StreamMine3G
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper, we present our approach on solving the DEBS Grand Challenge using StreamMine3G, a distributed, highly scalable, elastic and fault tolerant ESP system. We will provide an overview about the system architecture of Stream-Mine3G and implementation details of an application aimed at consumption prediction and outlier detection. Using our elastic approach, we can provide an accurate prediction as we can keep a practically unbounded history able to deal with high volume, highly fluctuating workloads. Our system also provides techniques for dealing with incomplete data in the source stream, which is a common problem when processing data from a large number of sources. Finally, we provide performance measurements showing that we are able to process the dataset given as part of the 2014 DEBS Challenge (135 GB) at a throughput of up to 40 kEvents/s.
Details
Originalsprache | Englisch |
---|---|
Seiten | 270-275 |
Seitenumfang | 6 |
Publikationsstatus | Veröffentlicht - 2014 |
Peer-Review-Status | Ja |
Konferenz
Titel | 8th ACM International Conference on Distributed Event-Based Systems (DEBS '14), ACM, 2014 |
---|---|
Kurztitel | DEBS'14 |
Veranstaltungsnummer | |
Dauer | 26 - 29 Mai 2014 |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | |
Stadt | New York |
Land | USA/Vereinigte Staaten |
Externe IDs
Scopus | 84903196373 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Ziele für nachhaltige Entwicklung
Schlagwörter
- Algorithms, Design, Reliability, Complex Event Processing, CEP, Event Stream Processing, ESP, Scalability, Migration, State Management, Fault Tolerance