Predicting early signs of dyslexia at a preliterate age by combining behavioral assessment with structural MRI

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Indra Kraft - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Jan Schreiber - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Riccardo Cafiero - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Riccardo Metere - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Gesa Schaadt - , Max-Planck-Institut für Kognitions- und Neurowissenschaften, Humboldt-Universität zu Berlin (Autor:in)
  • Jens Brauer - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Nicole E. Neef - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Bent Müller - , Fraunhofer-Institut für Zelltherapie und Immunologie (Autor:in)
  • Holger Kirsten - , Fraunhofer-Institut für Zelltherapie und Immunologie, Universität Leipzig (Autor:in)
  • Arndt Wilcke - , Fraunhofer-Institut für Zelltherapie und Immunologie (Autor:in)
  • Johannes Boltze - , Fraunhofer-Institut für Zelltherapie und Immunologie, Universität zu Lübeck (Autor:in)
  • Angela D. Friederici - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Michael A. Skeide - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)

Abstract

Background Recent studies suggest that neurobiological anomalies are already detectable in pre-school children with a family history of developmental dyslexia (DD). However, there is a lack of longitudinal studies showing a direct link between those differences at a preliterate age and the subsequent literacy difficulties seen in school. It is also not clear whether the prediction of DD in pre-school children can be significantly improved when considering neurobiological predictors, compared to models based on behavioral literacy precursors only. Methods We recruited 53 pre-reading children either with (N=25) or without a family risk of DD (N=28). Quantitative T1 MNI data and literacy precursor abilities were assessed at kindergarten age. A subsample of 35 children was tested for literacy skills either one or two years later, that is, either in first or second grade. Results The group comparison of quantitative T1 measures revealed significantly higher T1 intensities in the left anterior arcuate fascicle (AF), suggesting reduced myelin concentration in preliterate children at risk of DD. A logistic regression showed that DD can be predicted significantly better (p=.024) when neuroanatomical differences between groups are used as predictors (80%) compared to a model based on behavioral predictors only (63%). The Wald statistic confirmed that the T1 intensity of the left AF is a statistically significant predictor of DD (p<.05). Conclusions Our longitudinal results provide evidence for the hypothesis that neuroanatomical anomalies in children with a family risk of DD are related to subsequent problems in acquiring literacy. Particularly, solid white matter organization in the left anterior arcuate fascicle seems to play a pivotal role.

Details

OriginalspracheEnglisch
Seiten (von - bis)378-386
Seitenumfang9
FachzeitschriftNeuroImage
Jahrgang143
PublikationsstatusVeröffentlicht - 1 Dez. 2016
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 27608602
ORCID /0009-0004-4533-5880/work/150882781

Schlagworte

Schlagwörter

  • Arcuate fascicle, Cortical thickness, Developmental dyslexia, Diffusion-weighted imaging, Quantitative T1, Reading