PPF - A parallel particle filtering library

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Ömer Demirel - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Ihor Smal - , Erasmus University Rotterdam (Autor:in)
  • Wiro J. Niessen - , Erasmus University Rotterdam (Autor:in)
  • Erik Meijering - , Erasmus University Rotterdam (Autor:in)
  • Ivo F. Sbalzarini - , Professur für Wissenschaftliches Rechnen für Systembiologie, Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)

Abstract

We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributedmemory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with a tool for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 TB of particle data, on 192 cores with 67% parallel efficiency.

Details

OriginalspracheEnglisch
TitelIET Conference on Data Fusion and Target Tracking 2014
Herausgeber (Verlag)Institution of Engineering and Technology
Auflage629 CP
ISBN (Print)9781849198639
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa

Publikationsreihe

ReiheIET Conference on Data Fusion & Target Tracking: Algorithms and Applications (DF&TT)

Konferenz

TitelIET Conference on Data Fusion and Target Tracking 2014: Algorithms and Applications
Dauer30 April 2014
StadtLiverpool
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

ORCID /0000-0003-4414-4340/work/159608278

Schlagworte

ASJC Scopus Sachgebiete