Potentials of Deterministic Radio Propagation Simulation for AI-Enabled Localization and Sensing
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Machine leaning (ML) and artificial intelligence (AI) enable new methods for localization and sensing in next-generation networks to fulfill a wide range of use cases. These approaches rely on learning approaches that require large amounts of training and validation data. This paper addresses the data generation bottleneck to develop and validate such methods by proposing an integrated toolchain based on deterministic channel modeling and radio propagation simulation. The toolchain is demonstrated exemplary for scenario classification to obtain localization-related channel parameters within an aircraft cabin environment.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 2023 13th International Conference on Indoor Positioning and Indoor Navigation, IPIN 2023 |
Herausgeber (Verlag) | IEEE |
Seiten | 1-6 |
Seitenumfang | 6 |
ISBN (elektronisch) | 9798350320114 |
ISBN (Print) | 979-8-3503-2012-1 |
Publikationsstatus | Veröffentlicht - 28 Sept. 2023 |
Peer-Review-Status | Ja |
Konferenz
Titel | 2023 13th International Conference on Indoor Positioning and Indoor Navigation |
---|---|
Kurztitel | IPIN 2023 |
Veranstaltungsnummer | 13 |
Dauer | 25 - 28 September 2023 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Fraunhofer Institute for Integrated Circuits IIS |
Stadt | Nürnberg |
Land | Deutschland |
Externe IDs
ORCID | /0000-0002-3434-3488/work/149439249 |
---|---|
Scopus | 85180360576 |
Mendeley | a3a4a29e-7030-3da8-92d6-0ee465d792e2 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Location awareness, Training, Atmospheric modeling, Stochastic processes, Radio propagation, Reproducibility of results, Sensors, Scenario Classification, Sensing, AI-Enabled, Deterministic Radio Propagation Simulation, Localization