Potentials of Deterministic Radio Propagation Simulation for AI-Enabled Localization and Sensing

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Machine leaning (ML) and artificial intelligence (AI) enable new methods for localization and sensing in next-generation networks to fulfill a wide range of use cases. These approaches rely on learning approaches that require large amounts of training and validation data. This paper addresses the data generation bottleneck to develop and validate such methods by proposing an integrated toolchain based on deterministic channel modeling and radio propagation simulation. The toolchain is demonstrated exemplary for scenario classification to obtain localization-related channel parameters within an aircraft cabin environment.

Details

OriginalspracheEnglisch
TitelProceedings of the 2023 13th International Conference on Indoor Positioning and Indoor Navigation, IPIN 2023
Herausgeber (Verlag)IEEE
Seiten1-6
Seitenumfang6
ISBN (elektronisch)9798350320114
ISBN (Print)979-8-3503-2012-1
PublikationsstatusVeröffentlicht - 28 Sept. 2023
Peer-Review-StatusJa

Konferenz

Titel2023 13th International Conference on Indoor Positioning and Indoor Navigation
KurztitelIPIN 2023
Veranstaltungsnummer13
Dauer25 - 28 September 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtFraunhofer Institute for Integrated Circuits IIS
StadtNürnberg
LandDeutschland

Externe IDs

ORCID /0000-0002-3434-3488/work/149439249
Scopus 85180360576
Mendeley a3a4a29e-7030-3da8-92d6-0ee465d792e2

Schlagworte

Schlagwörter

  • Location awareness, Training, Atmospheric modeling, Stochastic processes, Radio propagation, Reproducibility of results, Sensors, Scenario Classification, Sensing, AI-Enabled, Deterministic Radio Propagation Simulation, Localization