Positive Ulrich sheaves
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert's theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 881-914 |
Seitenumfang | 34 |
Fachzeitschrift | Canadian Journal of Mathematics |
Jahrgang | 76 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Juni 2024 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85153961204 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- 14P05 14J60 14M12 12D15