Positive Ulrich sheaves

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert's theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.

Details

OriginalspracheEnglisch
Seiten (von - bis)881-914
Seitenumfang34
FachzeitschriftCanadian Journal of Mathematics
Jahrgang76
Ausgabenummer3
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85153961204

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • 14P05 14J60 14M12 12D15