(Positive) quadratic determinantal representations of quartic curves and the Robinson polynomial

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

We prove that every real nonnegative ternary quartic whose complex zero set is smooth can be represented as the determinant of a symmetric matrix with quadratic entries which is everywhere positive semidefinite. We show that the corresponding statement fails for the Robinson polynomial, answering a question by Buckley and \v{S}ivic.

Details

OriginalspracheEnglisch
Seiten (von - bis)232-262
Seitenumfang31
FachzeitschriftLinear Algebra and Its Applications
Jahrgang728
PublikationsstatusVeröffentlicht - 1 Jan. 2026
Peer-Review-StatusJa

Externe IDs

Mendeley 2b327c4f-acfa-3dbb-bb3a-b7ff755d82a3
Scopus 105015490314

Schlagworte

Schlagwörter

  • Positive polynomials, Determinantal representations, Real algebraic geometry, Robinson polynomial, Quartic curves