(Positive) quadratic determinantal representations of quartic curves and the Robinson polynomial
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove that every real nonnegative ternary quartic whose complex zero set is smooth can be represented as the determinant of a symmetric matrix with quadratic entries which is everywhere positive semidefinite. We show that the corresponding statement fails for the Robinson polynomial, answering a question by Buckley and \v{S}ivic.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 232-262 |
| Seitenumfang | 31 |
| Fachzeitschrift | Linear Algebra and Its Applications |
| Jahrgang | 728 |
| Publikationsstatus | Veröffentlicht - 1 Jan. 2026 |
| Peer-Review-Status | Ja |
Externe IDs
| Mendeley | 2b327c4f-acfa-3dbb-bb3a-b7ff755d82a3 |
|---|---|
| Scopus | 105015490314 |
Schlagworte
Schlagwörter
- Positive polynomials, Determinantal representations, Real algebraic geometry, Robinson polynomial, Quartic curves