Pivotality, twisted centres, and the anti-double of a Hopf monad
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Finite-dimensional Hopf algebras admit a correspondence between so-called pairs in involution, one-dimensional anti-Yetter--Drinfeld modules and algebra isomorphisms between the Drinfeld and anti-Drinfeld double. We extend it to general rigid monoidal categories and provide a monadic interpretation under the assumption that certain coends exist. Hereto we construct and study the anti-Drinfeld double of a Hopf monad. As an application the connection with the pivotality of Drinfeld centres and their underlying categories is discussed.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 86–149 |
| Seitenumfang | 64 |
| Fachzeitschrift | Theory and applications of categories : TAC |
| Jahrgang | 41 |
| Ausgabenummer | 4 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85184419811 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- math.QA, math.CT, primary:18M15, secondary: 16T05, 18C20, 18M30, anti-Drinfeld double, comodule monads, Pivotal categories, Hopf monads, centres, heaps, module categories