Piezoelectric-driven uniaxial pressure cell for muon spin relaxation and neutron scattering experiments

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Shreenanda Ghosh - , Institut für Festkörper- und Materialphysik (Autor:in)
  • Felix Brueckner - , Technische Universität Dresden (Autor:in)
  • Artem Nikitin - , Paul Scherrer Institute (Autor:in)
  • Vadim Grinenko - , Institut für Festkörper- und Materialphysik, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Matthias Elender - , Paul Scherrer Institute (Autor:in)
  • Andrew P. Mackenzie - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Autor:in)
  • Hubertus Luetkens - , Paul Scherrer Institute (Autor:in)
  • Hans-Henning Klauss - , Institut für Festkörper- und Materialphysik (Autor:in)
  • Clifford W. Hicks - , University of Alabama at Birmingham (Autor:in)

Abstract

We present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samples required for these measurement techniques, the cell is designed to generate forces up to similar to 1000 N. To minimize the background signal, the space around the sample is kept as open as possible. We demonstrate here that by mounting plate-like samples with epoxy, a uniaxial stress exceeding 1 GPa can be achieved in an active volume of at least 5 mm(3). We show that for practical operation, it is important to monitor both the force and displacement applied to the sample. In addition, because time is critical during facility experiments, samples are mounted in detachable holders that can be rapidly exchanged. The piezoelectric actuators are likewise contained in an exchangeable cartridge.

Details

OriginalspracheEnglisch
Aufsatznummer103902
Seitenumfang9
FachzeitschriftReview of scientific instruments
Jahrgang91
Ausgabenummer10
PublikationsstatusVeröffentlicht - 1 Okt. 2020
Peer-Review-StatusJa

Externe IDs

Scopus 85094674436

Schlagworte

Schlagwörter

  • STRAIN CONTROL, SUPERCONDUCTIVITY

Bibliotheksschlagworte