Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Amandine F.G. Godier-Furnémont - , Georg-August-Universität Göttingen, Columbia University, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Malte Tiburcy - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Eva Wagner - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Matthias Dewenter - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Simon Lämmle - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Ali El-Armouche - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Stephan E. Lehnart - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)
  • Gordana Vunjak-Novakovic - , Columbia University (Autor:in)
  • Wolfram Hubertus Zimmermann - , Georg-August-Universität Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Autor:in)

Abstract

A hallmark of mature mammalian ventricular myocardium is a positive force-frequency relationship (FFR). Despite evidence of organotypic structural and molecular maturation, a positive FFR has not been observed in mammalian tissue engineered heart muscle. We hypothesized that concurrent mechanical and electrical stimulation at frequencies matching physiological heart rate will result in functional maturation. We investigated the role of biomimetic mechanical and electrical stimulation in functional maturation in engineered heart muscle (EHM). Following tissue consolidation, EHM were subjected to electrical field stimulation at 0, 2, 4, or 6Hz for 5 days, while strained on flexible poles to facilitate auxotonic contractions. EHM stimulated at 2 and 4Hz displayed a similarly enhanced inotropic reserve, but a clearly diverging FFR. The positive FFR in 4Hz stimulated EHM was associated with reduced calcium sensitivity, frequency-dependent acceleration of relaxation, and enhanced post-rest potentiation. This was paralleled on the cellular level with improved calcium storage and release capacity of the sarcoplasmic reticulum and enhanced T-tubulation. We conclude that electro-mechanical stimulation at a physiological frequency supports functional maturation in mammalian EHM. The observed positive FFR in EHM has important implications for the applicability of EHM in cardiovascular research.

Details

OriginalspracheEnglisch
Seiten (von - bis)82-91
Seitenumfang10
FachzeitschriftBiomaterials
Jahrgang60
PublikationsstatusVeröffentlicht - 1 Aug. 2015
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 25985155
ORCID /0000-0003-2514-9429/work/151982635

Schlagworte

Schlagwörter

  • Biophysical properties, Calcium handling, Force frequency relationship, Force of contraction, Heart, Maturation, Myocardium, T-tubulation, Tissue engineering