Physical requirements for scaling up network-based biocomputation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jingyuan Zhu - , Lund University (Autor:in)
  • Till Korten - , Professur für BioNano-Werkzeuge (Autor:in)
  • Hillel Kugler - , Bar-Ilan University (Autor:in)
  • Falco Van Delft - , Molecular Sense Ltd (Autor:in)
  • Alf M nsson - , Linnaeus University (Autor:in)
  • Danny Reuter - , Technische Universität Chemnitz, Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Stefan Diez - , Professur für BioNano-Werkzeuge, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Heiner Linke - , Lund University (Autor:in)

Abstract

The high energy consumption of electronic data processors, together with physical challenges limiting their further improvement, has triggered intensive interest in alternative computation paradigms. Here we focus on network-based biocomputation (NBC), a massively parallel approach where computational problems are encoded in planar networks implemented with nanoscale channels. These networks are explored by biological agents, such as biological molecular motor systems and bacteria, benefitting from their energy efficiency and availability in large numbers. We analyse and define the fundamental requirements that need to be fulfilled to scale up NBC computers to become a viable technology that can solve large NP-complete problem instances faster or with less energy consumption than electronic computers. Our work can serve as a guide for further efforts to contribute to elements of future NBC devices, and as the theoretical basis for a detailed NBC roadmap.

Details

OriginalspracheEnglisch
Aufsatznummer105004
FachzeitschriftNew journal of physics
Jahrgang23
Ausgabenummer10
PublikationsstatusVeröffentlicht - 19 Okt. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-0750-8515/work/142235537

Schlagworte

Forschungsprofillinien der TU Dresden

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • molecular motor, nanofabrication, network-based biocomputation, NP-complete problem, parallel computing

Bibliotheksschlagworte