Photoacoustics-guided Real-Time Closed-loop Control of Magnetic Microrobots through Deep Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • R. Nauber - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • J. Hoppe - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • D.C. Robles - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • M. Medina-Sánchez - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Ikerbasque Basque Foundation for Science (Autor:in)

Abstract

Medical microrobots promise to increase the efficacy and reduce the invasiveness of certain medical procedures in the future.Real-time tracking of the microrobot, actuation, and closed-loop control of its position under in vivo conditions is crucial to fulfill the task at hand.We present a system for closed-loop control of magnetic microrobots using dual-mode ultrasound and photoacoustic imaging.It employs GPU-accelerated beamforming and tracking to achieve real-time operation with a closed-loop cycle time of 100 ms.Artifacts from simultaneous imaging and magnetic actuation are suppressed through time-multiplexing.To address the challenge of detecting microrobots in low-contrast, strong-background images, we implemented real-time Deep Learning-based tracking.A custom dataset of various types of microrobots is curated from long-duration closed-loop control measurements and employed to fine-tune a pre-trained detection model.We introduce a platform for real-time closed-loop control of microrobots and demonstrate its performance with a 300 μm spiral-shaped microrobot following a figure-of-8 shape under photoacoustic imaging guidance.The localization error is evaluated against an optical reference measurement.Our results show that photoacoustic-based tracking significantly outperforms ultrasound tracking, with the deep learning approach further reducing missed detections.This demonstrates the algorithm's ability to generalize to a previously unseen type of microrobot.We envision this platform to advance medical microrobotics research by providing real-time closed-loop control of untethered microrobots under deep tissue.

Details

OriginalspracheEnglisch
TitelProceedings of MARSS 2024 - 7th International Conference on Manipulation, Automation, and Robotics at Small Scales
Redakteure/-innenSinan Haliyo, Mokrane Boudaoud, Massimo Mastrangeli, Pierre Lambert, Sergej Fatikow
Seiten1-5
ISBN (elektronisch)979-8-3503-7680-7
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85202347432