Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mrityunjoy Kar - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Furqan Dar - , Washington University St. Louis (Autor:in)
  • Timothy J. Welsh - , University of Cambridge (Autor:in)
  • Laura T. Vogel - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Ralf Kühnemuth - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Anupa Majumdar - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Georg Krainer - , University of Cambridge (Autor:in)
  • Titus M. Franzmann - , Professur für Zelluläre Biochemie (Autor:in)
  • Simon Alberti - , Professur für Zelluläre Biochemie (Autor:in)
  • Claus A.M. Seidel - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Tuomas P.J. Knowles - , University of Cambridge (Autor:in)
  • Anthony A. Hyman - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Rohit V. Pappu - , Washington University St. Louis (Autor:in)

Abstract

Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation are thought to follow the tenets of classical nucleation theory, and, therefore, subsaturated solutions should be devoid of clusters with more than a few molecules. We tested this prediction using in vitro biophysical studies to characterize subsaturated solutions of phase-separating RNA-binding proteins with intrinsically disordered prion-like domains and RNA-binding domains. Surprisingly, and in direct contradiction to expectations from classical nucleation theory, we find that subsaturated solutions are characterized by the presence of heterogeneous distributions of clusters. The distributions of cluster sizes, which are dominated by small species, shift continuously toward larger sizes as protein concentrations increase and approach the saturation concentration. As a result, many of the clusters encompass tens to hundreds of molecules, while less than 1% of the solutions are mesoscale species that are several hundred nanometers in diameter. We find that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. We also find that cluster formation and phase separation can be decoupled using solutes as well as specific sets of mutations. Our findings, which are concordant with predictions for associative polymers, implicate an interplay between networks of sequence-specific and solubility-determining interactions that, respectively, govern cluster formation in subsaturated solutions and the saturation concentrations above which phase separation occurs.

Details

OriginalspracheEnglisch
Aufsatznummere2202222119
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America : PNAS
Jahrgang119
Ausgabenummer28
PublikationsstatusVeröffentlicht - 12 Juli 2022
Peer-Review-StatusJa

Externe IDs

PubMed 35787038
ORCID /0000-0003-4017-6505/work/142253850

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

ASJC Scopus Sachgebiete

Schlagwörter

  • associative polymers, mesoscale clusters, phase separation, sol-gel transitions, stickers and spacers, Biomolecular Condensates, RNA-Binding Proteins/genetics, Biophysics, Mutation, RNA-Binding Motifs

Bibliotheksschlagworte