Phase separation of a yeast prion protein promotes cellular fitness

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Titus M. Franzmann - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Marcus Jahnel - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Andrei Pozniakovsky - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Julia Mahamid - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Alex S. Holehouse - , Washington University St. Louis (Autor:in)
  • Elisabeth Nüske - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Doris Richter - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Wolfgang Baumeister - , Max Planck Institute of Biochemistry (Autor:in)
  • Stephan W. Grill - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Rohit V. Pappu - , Washington University St. Louis (Autor:in)
  • Anthony A. Hyman - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Simon Alberti - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

Despite the important role of prion domains in neurodegenerative disease, their physiological function has remained enigmatic. Previous work with yeast prions has defined prion domains as sequences that form self-propagating aggregates. Here, we uncovered an unexpected function of the canonical yeast prion protein Sup35. In stressed conditions, Sup35 formed protective gels via pH-regulated liquid-like phase separation followed by gelation. Phase separation was mediated by the N-terminal prion domain and regulated by the adjacent pH sensor domain. Phase separation promoted yeast cell survival by rescuing the essential Sup35 translation factor from stress-induced damage. Thus, prion-like domains represent conserved environmental stress sensors that facilitate rapid adaptation in unstable environments by modifying protein phase behavior.

Details

OriginalspracheEnglisch
Aufsatznummeraao5654
FachzeitschriftScience
Jahrgang359
Ausgabenummer6371
PublikationsstatusVeröffentlicht - 5 Jan. 2018
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4017-6505/work/142253838
ORCID /0000-0002-4281-7209/work/196680186
Scopus 85040130568
PubMed 29301985

Schlagworte

Bibliotheksschlagworte