Persistent high-energy spin excitations in iron-pnictide superconductors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ke Jin Zhou - , Paul Scherrer Institute, Diamond Light Source (Autor:in)
  • Yao Bo Huang - , Paul Scherrer Institute, CAS - Institute of Physics (Autor:in)
  • Claude Monney - , Paul Scherrer Institute (Autor:in)
  • Xi Dai - , CAS - Institute of Physics (Autor:in)
  • Vladimir N. Strocov - , Paul Scherrer Institute (Autor:in)
  • Nan Lin Wang - , CAS - Institute of Physics (Autor:in)
  • Zhi Guo Chen - , CAS - Institute of Physics (Autor:in)
  • Chenglin Zhang - , University of Tennessee, Knoxville (Autor:in)
  • Pengcheng Dai - , CAS - Institute of Physics, University of Tennessee, Knoxville (Autor:in)
  • Luc Patthey - , Paul Scherrer Institute (Autor:in)
  • Jeroen Van Den Brink - , Professur für Festkörpertheorie (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Hong Ding - , CAS - Institute of Physics (Autor:in)
  • Thorsten Schmitt - , Paul Scherrer Institute (Autor:in)

Abstract

Motivated by the premise that superconductivity in iron-based superconductors is unconventional and mediated by spin fluctuations, an intense research effort has been focused on characterizing the spin-excitation spectrum in the magnetically ordered parent phases of the Fe pnictides and chalcogenides. For these undoped materials, it is well established that the spin-excitation spectrum consists of sharp, highly dispersive magnons. The fate of these high-energy magnetic modes upon sizable doping with holes is hitherto unresolved. Here we demonstrate, using resonant inelastic X-ray scattering, that optimally hole-doped superconducting Ba 0.6 K 0.4 Fe 2 As 2 retains well-defined, dispersive high-energy modes of magnetic origin. These paramagnon modes are softer than, though as intense as, the magnons of undoped antiferromagnetic BaFe 2 As 2. The persistence of spin excitations well into the superconducting phase suggests that the spin fluctuations in Fe-pnictide superconductors originate from a distinctly correlated spin state. This connects Fe pnictides to cuprates, for which, in spite of fundamental electronic structure differences, similar paramagnons are present.

Details

OriginalspracheEnglisch
Aufsatznummer1470
Seiten (von - bis)1-6
Seitenumfang6
FachzeitschriftNature communications
Jahrgang4
PublikationsstatusVeröffentlicht - 2013
Peer-Review-StatusJa