Performance Analysis of Memristive-CNN based on a VCM Device Model

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Cellular Nonlinear Networks (CNN) as a powerful paradigm is highly suitable for signal processing of multiple tasks, since they can execute cascaded processing operations in a one-layer array via real-time template updating. Their VLSI implementation by using the conventional CMOS-based integration technology, however, remains a big challenge. The memristive CNN (M-CNN) offers several merits over conventional CNN, such as compactness, nonvolatility, versatility. This paper presents a direct comparison of computing performance between the M-CNN and the conventional CNN for the implementation of a LOGAND operation template using circuit simulation. Our findings show that the M-CNN implementation offers rapid attainment of equilibrium state compared to the CNN implementation. In addition, the result is stored in a non-volatile manner in the M-CNN whereas the CNN only offers a volatile storage.

Details

OriginalspracheEnglisch
Titel2022 IEEE International Symposium on Circuits and Systems (ISCAS)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten1184-1188
Seitenumfang5
ISBN (elektronisch)9781665484855
ISBN (Print)978-1-6654-8486-2
PublikationsstatusVeröffentlicht - 11 Nov. 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Symposium on Circuits and Systems (ISCAS)
ISSN0271-4302

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2022
KurztitelISCAS 2022
Dauer28 Mai - 1 Juni 2022
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtAustin Hilton
StadtAustin
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-7436-0103/work/142240381

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • cellular nonlinear networks, M-CNN, memristive cellular nonlinear networks, ReRAM, VCM