Performance Analysis of Memristive-CNN based on a VCM Device Model
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Cellular Nonlinear Networks (CNN) as a powerful paradigm is highly suitable for signal processing of multiple tasks, since they can execute cascaded processing operations in a one-layer array via real-time template updating. Their VLSI implementation by using the conventional CMOS-based integration technology, however, remains a big challenge. The memristive CNN (M-CNN) offers several merits over conventional CNN, such as compactness, nonvolatility, versatility. This paper presents a direct comparison of computing performance between the M-CNN and the conventional CNN for the implementation of a LOGAND operation template using circuit simulation. Our findings show that the M-CNN implementation offers rapid attainment of equilibrium state compared to the CNN implementation. In addition, the result is stored in a non-volatile manner in the M-CNN whereas the CNN only offers a volatile storage.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 2022 IEEE International Symposium on Circuits and Systems (ISCAS) |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 1184-1188 |
| Seitenumfang | 5 |
| ISBN (elektronisch) | 9781665484855 |
| ISBN (Print) | 978-1-6654-8486-2 |
| Publikationsstatus | Veröffentlicht - 11 Nov. 2022 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | IEEE International Symposium on Circuits and Systems (ISCAS) |
|---|---|
| ISSN | 0271-4302 |
Konferenz
| Titel | IEEE International Symposium on Circuits and Systems 2022 |
|---|---|
| Kurztitel | ISCAS 2022 |
| Dauer | 28 Mai - 1 Juni 2022 |
| Webseite | |
| Bekanntheitsgrad | Internationale Veranstaltung |
| Ort | Austin Hilton |
| Stadt | Austin |
| Land | USA/Vereinigte Staaten |
Externe IDs
| ORCID | /0000-0001-7436-0103/work/142240381 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- cellular nonlinear networks, M-CNN, memristive cellular nonlinear networks, ReRAM, VCM