Patterned Thermoresponsive Microgel Coatings for Noninvasive Processing of Adherent Cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Katja Uhlig - , Fraunhofer-Institut für Zelltherapie und Immunologie (Autor:in)
  • Thomas Wegener - , GeSiM – Gesellschaft für Silizium-Mikrosysteme mbH (Autor:in)
  • Jian He - , GeSiM – Gesellschaft für Silizium-Mikrosysteme mbH (Autor:in)
  • Michael Zeiser - , Universität Bielefeld (Autor:in)
  • Johannes Bookhold - , Universität Bielefeld (Autor:in)
  • Inna Dewald - , Universität Bayreuth (Autor:in)
  • Neus Godino - , Fraunhofer-Institut für Zelltherapie und Immunologie (Autor:in)
  • Magnus Jaeger - , Fraunhofer-Institut für Zelltherapie und Immunologie, Bundesinstitut für Risikobewertung (BfR) (Autor:in)
  • Thomas Hellweg - , Universität Bielefeld (Autor:in)
  • Andreas Fery - , Professur für Physikalische Chemie polymerer Materialien (gB/IPF) (PC5), Leibniz Institute of Polymer Research Dresden (Autor:in)
  • Claus Duschl - , Fraunhofer-Institut für Zelltherapie und Immunologie (Autor:in)

Abstract

Cultivation of adherently growing cells in artificial environments is of utmost importance in medicine and biotechnology to accomplish in vitro drug screening or to investigate disease mechanisms. Precise cell manipulation, like localized control over adhesion, is required to expand cells, to establish cell models for novel therapies and to perform noninvasive cell experiments. To this end, we developed a method of gentle, local lift-off of mammalian cells using polymer surfaces, which are reversibly and repeatedly switchable between a cell-attractive and a cell-repellent state. This property was introduced through micropatterned thermoresponsive polymer coatings formed from colloidal microgels. Patterning was obtained through automated nanodispensing or microcontact printing, making use of unspecific electrostatic interactions between microgels and substrates. This process is much more robust against ambient conditions than covalent coupling, thus lending itself to up-scaling. As an example, wound healing assays were accomplished at 37 °C with highly increased precision in microfluidic environments. (Figure Presented).

Details

OriginalspracheEnglisch
Seiten (von - bis)1110-1116
Seitenumfang7
FachzeitschriftBiomacromolecules
Jahrgang17
Ausgabenummer3
PublikationsstatusVeröffentlicht - 14 März 2016
Peer-Review-StatusJa

Externe IDs

PubMed 26879608