Passive SOBP generation from a static proton pencil beam using 3D-printed range modulators for FLASH experiments

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Felix Horst - , Helmholtz-Zentrum Dresden-Rossendorf, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Elke Beyreuther - , Universitätsklinikum Carl Gustav Carus Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Elisabeth Bodenstein - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Helmholtz-Zentrum Dresden-Rossendorf, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Sebastian Gantz - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Diego Misseroni - , Università degli Studi di Trento (Autor:in)
  • Nicola M. Pugno - , Università degli Studi di Trento, Queen Mary University of London (Autor:in)
  • Christoph Schuy - , GSI Helmholtzzentrum für Schwerionenforschung (Autor:in)
  • Francesco Tommasino - , Università degli Studi di Trento (Autor:in)
  • Uli Weber - , GSI Helmholtzzentrum für Schwerionenforschung (Autor:in)
  • Jörg Pawelke - , Helmholtz-Zentrum Dresden-Rossendorf, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)

Abstract

The University Proton Therapy facility in Dresden (UPTD), Germany, is equipped with an experimental room with a beamline providing a static pencil beam. High proton beam currents can be achieved at this beamline which makes it suitable for FLASH experiments. However, the established experimental setup uses only the entrance channel of the proton Bragg curve. In this work, a set of 3D-printed range modulators designed to generate spread out Bragg peaks (SOBPs) for radiobiological experiments at ultra-high dose rate at this beamline is described. A new method to optimize range modulators specifically for the case of a static pencil beam based on the central depth dose profile is introduced. Modulators for two different irradiation setups were produced and characterized experimentally by measurements of lateral and depth dose distributions using different detectors. In addition, Monte Carlo simulations were performed to assess profiles of the dose averaged linear energy transfer (LETD) in water. These newly produced range modulators will allow future proton FLASH experiments in the SOBP at UPTD with two different experimental setups.

Details

OriginalspracheEnglisch
Aufsatznummer1213779
FachzeitschriftFrontiers in physics
Jahrgang11
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • 3D-printing, FLASH effect, proton therapy, range modulator, spread out Bragg peak, ultra-high dose rate

Bibliotheksschlagworte