Partitioning Strategy Selection for In-Memory Graph Pattern Matching on Multiprocessor Systems
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Pattern matching on large graphs is the foundation for a variety of application domains. The continuously increasing size of the underlying graphs requires highly parallel in-memory graph processing engines that need to consider non-uniform memory access (NUMA) and concurrency issues to scale up on modern multiprocessor systems. To tackle these aspects, a fine-grained graph partitioning becomes increasingly important. Hence, we present a classification of graph partitioning strategies and evaluate representative algorithms on medium and large-scale NUMA systems in this paper. As a scalable pattern matching processing infrastructure, we leverage a data-oriented architecture that preserves data locality and minimizes concurrency-related bottlenecks on NUMA systems. Our in-depth evaluation reveals that the optimal partitioning strategy depends on a variety of factors and consequently, we derive a set of indicators for selecting the optimal partitioning strategy suitable for a given graph and workload.
Details
Originalsprache | Englisch |
---|---|
Titel | Euro-Par 2017 |
Redakteure/-innen | Francisco F. Rivera, Tomas F. Pena, Jose C. Cabaleiro |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 149-163 |
Seitenumfang | 15 |
ISBN (Print) | 9783319642024 |
Publikationsstatus | Veröffentlicht - 2017 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 10417 |
---|---|
ISSN | 0302-9743 |
Konferenz
Titel | 23rd International Conference on Parallel and Distributed Computing, Euro-Par 2017 |
---|---|
Dauer | 28 August - 1 September 2017 |
Stadt | Santiago de Compostela |
Land | Spanien |
Externe IDs
ORCID | /0000-0001-8107-2775/work/142253521 |
---|