Particle swarm CMA evolution strategy for the optimization of multi-funnel landscapes
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We extend the Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) by collaborative concepts from Particle Swarm Optimization (PSO). The proposed Particle Swarm CMA-ES (PS-CMA-ES) algorithm is a hybrid realparameter algorithm that combines the robust local search performance of CMA-ES with the global exploration power of PSO using multiple CMA-ES instances to explore different parts of the search space in parallel. Swarm intelligence is introduced byconsidering individual CMA-ES instances as lumped particles that communicate with each other. This includes non-local information in CMA-ES, which improves the search direction and the sampling distribution. We evaluate the performance of PS-CMA-ES on the IEEE CEC 2005 benchmark test suite. The new PS-CMA-ES algorithm shows superior performance on noisy problems and multi-funnel problems with non-convexunderlying topology.
Details
Originalsprache | Englisch |
---|---|
Titel | 2009 IEEE Congress on Evolutionary Computation, CEC 2009 |
Herausgeber (Verlag) | IEEE Xplore |
Seiten | 2685-2692 |
Seitenumfang | 8 |
ISBN (Print) | 9781424429592 |
Publikationsstatus | Veröffentlicht - 2009 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | 2009 IEEE Congress on Evolutionary Computation, CEC 2009 |
---|
Konferenz
Titel | 2009 IEEE Congress on Evolutionary Computation, CEC 2009 |
---|---|
Dauer | 18 - 21 Mai 2009 |
Stadt | Trondheim |
Land | Norwegen |
Externe IDs
ORCID | /0000-0003-4414-4340/work/159608331 |
---|