Partial Optimality in the Linear Ordering Problem
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The linear ordering problem consists in finding a linear order < on a finite set A so as to minimize the sum of costs associated with pairs of elements a, b for which a < b. The problem is NP-hard and APX-hard. We introduce algorithms for solving the problem partially by deciding efficiently for some pairs (a, b) whether a < b is in an optimal solution. To do so, we construct maps from the feasible set of orders to itself and establish efficiently testable conditions on the cost function of the problem for which these maps are improving. We examine the effectiveness and efficiency of these conditions and algorithms empirically, on two data sets.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | ICML'24: Proceedings of the 41st International Conference on Machine Learning |
| Herausgeber (Verlag) | PMLR |
| Seiten | 46514-46529 |
| Seitenumfang | 16 |
| Band | 235 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Proceedings of Machine Learning Research |
|---|---|
| Band | 235 |
Konferenz
| Titel | 41st International Conference on Machine Learning |
|---|---|
| Kurztitel | ICML 2024 |
| Veranstaltungsnummer | 41 |
| Dauer | 21 - 27 Juli 2024 |
| Webseite | |
| Ort | Messe Wien Congress and Convention Center |
| Stadt | Wien |
| Land | Österreich |
Externe IDs
| Scopus | 85203817384 |
|---|---|
| ORCID | /0000-0001-5036-9162/work/176859194 |