Partial Optimality in the Linear Ordering Problem

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The linear ordering problem consists in finding a linear order < on a finite set A so as to minimize the sum of costs associated with pairs of elements a, b for which a < b. The problem is NP-hard and APX-hard. We introduce algorithms for solving the problem partially by deciding efficiently for some pairs (a, b) whether a < b is in an optimal solution. To do so, we construct maps from the feasible set of orders to itself and establish efficiently testable conditions on the cost function of the problem for which these maps are improving. We examine the effectiveness and efficiency of these conditions and algorithms empirically, on two data sets.

Details

OriginalspracheEnglisch
TitelICML'24: Proceedings of the 41st International Conference on Machine Learning
Herausgeber (Verlag)PMLR
Seiten46514-46529
Seitenumfang16
Band235
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of Machine Learning Research
Band235

Konferenz

Titel41st International Conference on Machine Learning
KurztitelICML 2024
Veranstaltungsnummer41
Dauer21 - 27 Juli 2024
Webseite
OrtMesse Wien Congress and Convention Center
StadtWien
LandÖsterreich

Externe IDs

Scopus 85203817384
ORCID /0000-0001-5036-9162/work/176859194