Partial barriers to chaotic transport in 4D symplectic maps
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase space. Typically, the most restrictive partial barrier in a 2D symplectic map is based on a cantorus, the Cantor set remnants of a broken 1D torus. For a 4D symplectic map, we establish a partial barrier based on what we call a cantorus-NHIM - a normally hyperbolic invariant manifold with the structure of a cantorus. Using a flux formula, we determine the global 4D flux across a partial barrier based on a cantorus-NHIM by approximating it with high-order periodic NHIMs. In addition, we introduce a local 3D flux depending on the position along a resonance channel, which is relevant in the presence of slow Arnold diffusion. Moreover, for a partial barrier composed of stable and unstable manifolds of a NHIM, we utilize periodic NHIMs to quantify the corresponding flux.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 013125 |
Seitenumfang | 18 |
Fachzeitschrift | Chaos |
Jahrgang | 33 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Peer-Review-Status | Ja |
Externe IDs
WOS | 000917936100003 |
---|
Schlagworte
Schlagwörter
- Arnold diffusion, Frequency-analysis, Global dynamics, Hamiltonian-systems, Hyperbolic invariant-manifolds, Instability, Multidimensional systems, Phase-space, Resonances, Tori