Parabolic Tamari Lattices in Linear Type B
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study parabolic aligned elements associated with the type-B Coxeter group and the so-called linear Coxeter element. These elements were introduced algebraically in (Mühle andWilliams, 2019) for parabolic quotients of finite Coxeter groups and were characterized by a certain forcing condition on inversions. We focus on the type-B case and give a combinatorial model for these elements in terms of pattern avoidance. Moreover, we describe an equivalence relation on parabolic quotients of the type-B Coxeter group whose equivalence classes are indexed by the aligned elements. We prove that this equivalence relation extends to a congruence relation for the weak order. The resulting quotient lattice is the type-B analogue of the parabolic Tamari lattice introduced for type A in (Mühle and Williams, 2019). These lattices have not appeared in the literature before.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 62 |
| Seitenumfang | 12 |
| Fachzeitschrift | Séminaire Lotharingien de Combinatoire : SLC |
| Jahrgang | 2022 |
| Ausgabenummer | 86B |
| Publikationsstatus | Veröffentlicht - 1 Apr. 2022 |
| Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Coxeter–Catalan combinatorics, hyperoctahedral group, parabolic quotient, sign-symmetric permutation, Tamari lattice