OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Regina Mencia - , Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (Autor:in)
  • Gabriel Céccoli - , Instituto de Agrobiotecnología del Litoral (Autor:in)
  • Georgina Fabro - , Centro de Investigaciones en Química Biológica de Córdoba (Autor:in)
  • Pablo Torti - , Instituto de Agrobiotecnología del Litoral (Autor:in)
  • Francisco Colombatti - , Instituto de Agrobiotecnología del Litoral (Autor:in)
  • Jutta Ludwig-Müller - , Institut für Botanik, Technische Universität Dresden (Autor:in)
  • Maria Elena Alvarez - , Centro de Investigaciones en Química Biológica de Córdoba (Autor:in)
  • Elina Welchen - , Instituto de Agrobiotecnología del Litoral (Autor:in)

Abstract

Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.

Details

OriginalspracheEnglisch
Seiten (von - bis)1112-1127
Seitenumfang16
FachzeitschriftPlant physiology
Jahrgang184
Ausgabenummer2
PublikationsstatusVeröffentlicht - Okt. 2020
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC7536703
Scopus 85092668400

Schlagworte

Schlagwörter

  • Arabidopsis/genetics, Arabidopsis Proteins/metabolism, Disease Resistance/genetics, Gene Expression Regulation, Plant, Genes, Plant, Genetic Variation, Genotype, Host-Pathogen Interactions/genetics, Mitochondrial Proteins/metabolism, Mutation, Plant Diseases/microbiology, Pseudomonas syringae/pathogenicity, Salicylic Acid/metabolism