Orbital-driven nematicity in FeSe

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • S. H. Baek - , Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • D. V. Efremov - , Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • J. M. Ok - , Pohang University of Science and Technology (Autor:in)
  • J. S. Kim - , Pohang University of Science and Technology (Autor:in)
  • Jeroen Van Den Brink - , Professur für Festkörpertheorie (gB/IFW), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • B. Büchner - , Professur für Experimentelle Festkörperphysik (gB/IFW), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)

Abstract

A fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of two other instabilities. In addition to a tendency towards magnetic order, these Fe-based systems have a propensity for nematic ordering: a lowering of the rotational symmetry while time-reversal invariance is preserved. Setting the stage for superconductivity, it is heavily debated whether the nematic symmetry breaking is driven by lattice, orbital or spin degrees of freedom. Here, we report a very clear splitting of NMR resonance lines in FeSe at T nem = 91 K, far above the superconducting T c of 9.3 K. The splitting occurs for magnetic fields perpendicular to the Fe planes and has the temperature dependence of a Landau-type order parameter. Spin-lattice relaxation rates are not affected at T nem, which unequivocally establishes orbital degrees of freedom as driving the nematic order. We demonstrate that superconductivity competes with the emerging nematicity.

Details

OriginalspracheEnglisch
Seiten (von - bis)210-214
Seitenumfang5
FachzeitschriftNature materials
Jahrgang14
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2015
Peer-Review-StatusJa