Optimizing tensor contractions for embedded devices with racetrack memory scratch-pads

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Tensor contraction is a fundamental operation in many algorithms with a plethora of applications ranging from quantum chemistry over fluid dynamics and image processing to machine learning. The performance of tensor computations critically depends on the efficient utilization of on-chip memories. In the context of low-power embedded devices, efficient management of the memory space becomes even more crucial, in order to meet energy constraints. This work aims at investigating strategies for performance- and energy-efficient tensor contractions on embedded systems, using racetrack memory (RTM)-based scratch-pad memory (SPM). Compiler optimizations such as the loop access order and data layout transformations paired with architectural optimizations such as prefetching and preshifting are employed to reduce the shifting overhead in RTMs. Experimental results demonstrate that the proposed optimizations improve the SPM performance and energy consumption by 24% and 74% respectively compared to an iso-capacity SRAM.

Details

OriginalspracheEnglisch
TitelLCTES 2019: Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems
Herausgeber (Verlag)Association for Computing Machinery (ACM), New York
Seiten5-18
Seitenumfang14
ISBN (elektronisch)978-1-4503-6693-9
PublikationsstatusVeröffentlicht - 23 Juni 2019
Peer-Review-StatusJa

Publikationsreihe

ReiheCPSWeek: Cyber-physical Systems (SIGPLAN/SIGBED)

Konferenz

Titel20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2019, co-located with PLDI 2019
Dauer23 Juni 2019
StadtPhoenix
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-5007-445X/work/141545623

Schlagworte

Forschungsprofillinien der TU Dresden

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Compiler optimization, Data transformation, Embedded systems, Matrix multiplication, Prefetching, Preshifting, Racetrack memory, Tensor contraction, Tensors