Optimizing tensor contractions for embedded devices with racetrack memory scratch-pads
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Tensor contraction is a fundamental operation in many algorithms with a plethora of applications ranging from quantum chemistry over fluid dynamics and image processing to machine learning. The performance of tensor computations critically depends on the efficient utilization of on-chip memories. In the context of low-power embedded devices, efficient management of the memory space becomes even more crucial, in order to meet energy constraints. This work aims at investigating strategies for performance- and energy-efficient tensor contractions on embedded systems, using racetrack memory (RTM)-based scratch-pad memory (SPM). Compiler optimizations such as the loop access order and data layout transformations paired with architectural optimizations such as prefetching and preshifting are employed to reduce the shifting overhead in RTMs. Experimental results demonstrate that the proposed optimizations improve the SPM performance and energy consumption by 24% and 74% respectively compared to an iso-capacity SRAM.
Details
Originalsprache | Englisch |
---|---|
Titel | LCTES 2019: Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems |
Herausgeber (Verlag) | Association for Computing Machinery (ACM), New York |
Seiten | 5-18 |
Seitenumfang | 14 |
ISBN (elektronisch) | 978-1-4503-6693-9 |
Publikationsstatus | Veröffentlicht - 23 Juni 2019 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | CPSWeek: Cyber-physical Systems (SIGPLAN/SIGBED) |
---|
Konferenz
Titel | 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2019, co-located with PLDI 2019 |
---|---|
Dauer | 23 Juni 2019 |
Stadt | Phoenix |
Land | USA/Vereinigte Staaten |
Externe IDs
ORCID | /0000-0002-5007-445X/work/141545623 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Compiler optimization, Data transformation, Embedded systems, Matrix multiplication, Prefetching, Preshifting, Racetrack memory, Tensor contraction, Tensors