Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Query optimization in database systems is a crucial issue and despite decades of research, it is still far from being solved. Nowadays, query optimizers usually provide hints to be able to steer the optimization on a query-by-query basis. However, setting the best-fitting optimizer hints is challenging. To tackle that, we present a learning-based approach to predict the best-fitting hints for each incoming query. In particular, our learning approach is based on simple gradient boosting, where we learn one model per query context for fine-grained predictions rather than a single global context-agnostic model as proposed in related work. We demonstrate the efficiency as well as effectiveness of our learning-based approach using the open-source database system PostgreSQL and show that our approach outperforms related work in that context.

Details

OriginalspracheEnglisch
TitelDatenbanksysteme fur Business, Technologie und Web, BTW 2023
Redakteure/-innenBirgitta Konig-Ries, Stefanie Scherzinger, Wolfgang Lehner, Gottfried Vossen
Herausgeber (Verlag)Gesellschaft fur Informatik (GI)
Seiten1075-1081
Seitenumfang7
ISBN (elektronisch)978-3-88579-725-8
PublikationsstatusVeröffentlicht - 6 März 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85149934725
dblp conf/btw/ThiessatWHH23
Mendeley 8eafd0cd-d506-30cb-a1d9-894ef8ffe6ab

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Gradient Boosting, Hint Set Prediction, Query Optimization