Optimizing Query Prices for Data-as-a-Service

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Data-as-a-Service (DaaS) is a branch of cloud computing that provides support to "query the Web". Due to its ultrahigh scale, it is important establish rules for pricing resources, and guidelines for infrastructure investments. Those decisions should prioritize the compliance with SLA requirements, minimizing the incidence of agreement breaches that compromise the performance of the cloud services, as well as optimizing the use of resources and the cost of the services. The objective of this work is to address the pricing problem of DaaS by developing a cost model that optimizes the prices of query virtual machines across data centers by performing a cost-based scheduling.

Details

OriginalspracheEnglisch
TitelIEEE BigData Congress 2015
Herausgeber (Verlag)IEEE Computer Society, Washington
Seitenumfang8
PublikationsstatusVeröffentlicht - 1 Juli 2015
Peer-Review-StatusJa

Externe IDs

Scopus 84959533633

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • cloud computing, price optimization, vm scheduling, Scheduling, Data models, Processor scheduling, Mathematical model, Pricing, Resource management, Linear programming