Optimizing multiple top-k queries over joins
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Advanced Data Mining applications require more and more support from relational database engines. Especially clustering applications in high dimensional features space demand a proper support of multiple Top-k queries in order to perform projected clustering. Although some research tackles to problem of optimizing restricted ranking (top-k) queries, there is no solution considering more than one single ranking criterion. This deficit - optimizing multiple Topk queries over joins - is targeted by this paper from two perspectives. On the one hand, we propose a minimal but quite handy extension of SQL to express multiple top-k queries. On the other hand, we propose an optimized hash join strategy to efficiently execute this type of queries. Extensive experiments conducted in this context show the feasibility of our proposal.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Bearbeiten Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM |
| Seiten | 195-204 |
| Seitenumfang | 10 |
| Publikationsstatus | Veröffentlicht - 2005 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM |
|---|---|
| ISSN | 1099-3371 |
Konferenz
| Titel | 17th International Conference Scientific and Statistical Database Management, SSDBM 2005 |
|---|---|
| Dauer | 27 - 29 Juni 2005 |
| Stadt | Santa Barbara, CA |
| Land | USA/Vereinigte Staaten |
Externe IDs
| ORCID | /0000-0001-8107-2775/work/200630375 |
|---|