Optimizing multiple top-k queries over joins

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Advanced Data Mining applications require more and more support from relational database engines. Especially clustering applications in high dimensional features space demand a proper support of multiple Top-k queries in order to perform projected clustering. Although some research tackles to problem of optimizing restricted ranking (top-k) queries, there is no solution considering more than one single ranking criterion. This deficit - optimizing multiple Topk queries over joins - is targeted by this paper from two perspectives. On the one hand, we propose a minimal but quite handy extension of SQL to express multiple top-k queries. On the other hand, we propose an optimized hash join strategy to efficiently execute this type of queries. Extensive experiments conducted in this context show the feasibility of our proposal.

Details

OriginalspracheEnglisch
TitelBearbeiten Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM
Seiten195-204
Seitenumfang10
PublikationsstatusVeröffentlicht - 2005
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of the International Conference on Scientific and Statistical Database Management, SSDBM
ISSN1099-3371

Konferenz

Titel17th International Conference Scientific and Statistical Database Management, SSDBM 2005
Dauer27 - 29 Juni 2005
StadtSanta Barbara, CA
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-8107-2775/work/200630375

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

ASJC Scopus Sachgebiete