Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Vítězslav Moudrý - , Czech University of Life Sciences Prague (Autor:in)
  • Manuele Bazzichetto - , Czech University of Life Sciences Prague (Autor:in)
  • Ruben Remelgado - , Technische Universität Dresden, Universität Bonn (Autor:in)
  • Rodolphe Devillers - , Université de La Réunion (Autor:in)
  • Jonathan Lenoir - , Université de Picardie Jules Verne (Autor:in)
  • Rubén G. Mateo - , Universidad Autónoma de Madrid (Autor:in)
  • Jonas J. Lembrechts - , University of Antwerp (Autor:in)
  • Neftalí Sillero - , Universidade do Porto (Autor:in)
  • Vincent Lecours - , Université du Québec à Chicoutimi (Autor:in)
  • Anna F. Cord - , Professur für Modellbasierte Landschaftsökologie, Universität Bonn (Autor:in)
  • Vojtěch Barták - , Czech University of Life Sciences Prague (Autor:in)
  • Petr Balej - , Czech University of Life Sciences Prague (Autor:in)
  • Duccio Rocchini - , Czech University of Life Sciences Prague, Università di Bologna (Autor:in)
  • Michele Torresani - , Libera Universita di Bolzano (Autor:in)
  • Salvador Arenas-Castro - , University of Córdoba (Autor:in)
  • Matěj Man - , Czech Academy of Sciences (Autor:in)
  • Dominika Prajzlerová - , Czech University of Life Sciences Prague (Autor:in)
  • Kateřina Gdulová - , Czech University of Life Sciences Prague (Autor:in)
  • Jiří Prošek - , Czech University of Life Sciences Prague, Czech Academy of Sciences (Autor:in)
  • Elisa Marchetto - , Università di Bologna (Autor:in)
  • Alejandra Zarzo-Arias - , University of Oviedo, CSIC - Museo Nacional de Ciencias Naturales (MNCN) (Autor:in)
  • Lukáš Gábor - , Czech University of Life Sciences Prague (Autor:in)
  • François Leroy - , Czech University of Life Sciences Prague (Autor:in)
  • Matilde Martini - , Università di Bologna (Autor:in)
  • Marco Malavasi - , University of Sassari (Autor:in)
  • Roberto Cazzolla Gatti - , Università di Bologna (Autor:in)
  • Jan Wild - , Czech University of Life Sciences Prague, Czech Academy of Sciences (Autor:in)
  • Petra Šímová - , Czech University of Life Sciences Prague (Autor:in)

Abstract

Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species–environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.

Details

OriginalspracheEnglisch
Aufsatznummere07294
FachzeitschriftEcography
Jahrgang2024
Ausgabenummer12
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 2 Aug. 2024
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • data quality, ecological niche modelling, filtering, sampling, spatial scale, validation