OPTIMISED MODELS FOR AR/VR BY USING GEOMETRIC COMPLEXITY METRICS TO CONTROL TESSELLATION
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
AR/VR applications are a valuable tool in product design and lifecycle. But the integration of AR/VR is not seamless, as CAD models need to be prepared for the AR/VR applications. One necessary data transformation is the tessellation of the analytically described geometry. To ensure the usability, visual quality and evaluability of the AR/VR application, time consuming optimisation is needed depending on the product complexity and the performance of the target device.Widespread approaches to this problem are based on iterative mesh decimation. This approach ignores the varying importance of geometries and the required visual quality in engineering applications. Our predictive approach is an alternative that enables optimisation without iterative process steps on the tessellated geometry.The contribution presents an approach that uses surface-based prediction and enables predictions of the perceived visual quality of the geometries. This contains the investigation of different geometric complexity metrics gathered from literature as basis for prediction models. The approach is implemented in a geometry preparation tool and the results are compared with other approaches.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2855–2864 |
Seitenumfang | 10 |
Fachzeitschrift | Proceedings of the Design Society |
Jahrgang | 3 |
Publikationsstatus | Veröffentlicht - 19 Juni 2023 |
Peer-Review-Status | Ja |
Externe IDs
unpaywall | 10.1017/pds.2023.286 |
---|---|
Mendeley | eacb4b73-8b6f-3000-b51d-217dc1a378a8 |
Scopus | 85165465295 |
ORCID | /0000-0001-9789-2823/work/142238879 |
Schlagworte
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Machine learning, Optimisation, Virtual reality, Visualisation