Optimal Wasserstein-1 distance between SDEs driven by Brownian motion and stable processes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We are interested in the following two Rd-valued stochastic differential equations (SDEs): (Formula Presented), where σ is an invertible d × d matrix, Lt is a rotationally symmetric α-stable Lévy process, and Bt is a d-dimensional standard Brownian motion (note that Bt is a rotationally symmetric α-stable Lévy process with α = 2). We show that for any α0 ∈(1,2) the Wasserstein-1 distance W1 satisfies for α ∈[α0,2) [Formula Presented.] which implies, in particular, [Formula Presented.] where μα and μ2 are the ergodic measures of Xt and Yt respectively. For the special case of a d-dimensional Ornstein–Uhlenbeck system, we show that W1α2)≥Cd (2 − α) for all α ∈(1,2); this indicates that the convergence rate with respect to α in the previous bound is optimal. The term d log(1 + d) appearing in the bound seems to also be optimal for the dimension d.

Details

OriginalspracheEnglisch
Seiten (von - bis)1834-1857
Seitenumfang24
Fachzeitschrift Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
Jahrgang31
Ausgabenummer3
PublikationsstatusVeröffentlicht - Aug. 2025
Peer-Review-StatusJa

Externe IDs

Scopus 105002808395

Schlagworte