Optimal Newton–Secant like methods without memory for solving nonlinear equations with its dynamics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mehdi Salimi - , Technische Universität Dresden (Autor:in)
  • Taher Lotfi - , Islamic Azad University (Autor:in)
  • Somayeh Sharifi - , Islamic Azad University (Autor:in)
  • Stefan Siegmund - , Zentrum für Dynamik, Professur für Dynamik und Steuerung, Technische Universität Dresden (Autor:in)

Abstract

We construct two optimal Newton–Secant like iterative methods for solving nonlinear equations. The proposed classes have convergence order four and eight and cost only three and four function evaluations per iteration, respectively. These methods support the Kung and Traub conjecture and possess a high computational efficiency. The new methods are illustrated by numerical experiments and a comparison with some existing optimal methods. We conclude with an investigation of the basins of attraction of the solutions in the complex plane.

Details

OriginalspracheEnglisch
Seiten (von - bis)1759-1777
Seitenumfang19
FachzeitschriftInternational Journal of Computer Mathematics
Jahrgang94
Ausgabenummer9
PublikationsstatusVeröffentlicht - 2 Sept. 2017
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0967-6747/work/149795406

Schlagworte

Schlagwörter

  • Kung and Traub's conjecture, Multi-point iterative methods, Newton–Secant method