Optimal Homogenization Rates in Stochastic Homogenization of Nonlinear Uniformly Elliptic Equations and Systems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Julian Fischer - , Institute of Science and Technology Austria (Autor:in)
  • Stefan Neukamm - , Technische Universität Dresden (Autor:in)

Abstract

We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on R d with stationary law (that is spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale ε> 0 , we establish homogenization error estimates of the order ε in case d≧ 3 , and of the order ε| log ε| 1 / 2 in case d= 2. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence ε δ. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order (L/ ε) - d / 2 for a representative volume of size L. Our results also hold in the case of systems for which a (small-scale) C 1 , α regularity theory is available.

Details

OriginalspracheEnglisch
Seiten (von - bis)343-452
Seitenumfang110
FachzeitschriftArchive for rational mechanics and analysis
Jahrgang242
Ausgabenummer1
PublikationsstatusVeröffentlicht - Okt. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85108690883

Schlagworte

Schlagwörter

  • HAMILTON-JACOBI EQUATIONS, REGULARITY, CONVERGENCE, ELASTICITY, VALIDITY

Bibliotheksschlagworte