Optical properties of a vibrationally modulated solid state Mott insulator

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • S. Kaiser - , Max Planck Institute for the Structure and Dynamics of Matter (Autor:in)
  • S. R. Clark - , National University of Singapore, University of Oxford (Autor:in)
  • D. Nicoletti - , Max Planck Institute for the Structure and Dynamics of Matter (Autor:in)
  • G. Cotugno - , Max Planck Institute for the Structure and Dynamics of Matter, University of Oxford (Autor:in)
  • R. I. Tobey - , University of Oxford (Autor:in)
  • N. Dean - , University of Oxford (Autor:in)
  • S. Lupi - , University of Rome La Sapienza (Autor:in)
  • H. Okamoto - , The University of Tokyo (Autor:in)
  • T. Hasegawa - , National Institute of Advanced Industrial Science and Technology (Autor:in)
  • D. Jaksch - , National University of Singapore, University of Oxford (Autor:in)
  • A. Cavalleri - , Max Planck Institute for the Structure and Dynamics of Matter, University of Oxford (Autor:in)

Abstract

Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F 2 TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode.

Details

OriginalspracheEnglisch
Aufsatznummer3823
FachzeitschriftScientific reports
Jahrgang4
PublikationsstatusVeröffentlicht - 22 Jan. 2014
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0001-9862-2788/work/142255374

Schlagworte

ASJC Scopus Sachgebiete