Optical characterization of molecular interaction strength in protein condensates

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Timon Andreas Beck - , Biotechnologisches Zentrum (BIOTEC), Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin (Autor:in)
  • Lize-Mari van der Linden - , Professur für Zelluläre Biochemie (Autor:in)
  • Wade M Borcherds - , St. Jude Children Research Hospital (Autor:in)
  • Kyoohyun Kim - , Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin (Autor:in)
  • Raimund Schlüßler - , Professur für Zelluläre Biochemie (Autor:in)
  • Paul Müller - , Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin (Autor:in)
  • Titus Marcellus Franzmann - , Professur für Zelluläre Biochemie (Autor:in)
  • Conrad Möckel - , Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin (Autor:in)
  • Ruchi Yashavantgiri Goswami - , Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin (Autor:in)
  • Mark Leaver - , Max Planck Institute for the Science of Light (Autor:in)
  • Tanja Mittag - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Simon Alberti - , Professur für Zelluläre Biochemie (Autor:in)
  • Jochen Guck - , Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)

Abstract

Biomolecular condensates have been identified as a ubiquitous means of intracellular organization, exhibiting very diverse material properties. However, techniques to characterize these material properties and their underlying molecular interactions are scarce. Here, we introduce two optical techniques-Brillouin microscopy and quantitative phase imaging (QPI)-to address this scarcity. We establish Brillouin shift and linewidth as measures for average molecular interaction and dissipation strength, respectively, and we used QPI to obtain the protein concentration within the condensates. We monitored the response of condensates formed by fused in sarcoma (FUS) and by the low-complexity domain of hnRNPA1 (A1-LCD) to altering temperature and ion concentration. Conditions favoring phase separation increased Brillouin shift, linewidth, and protein concentration. In comparison to solidification by chemical cross-linking, the ion-dependent aging of FUS condensates had a small effect on the molecular interaction strength inside. Finally, we investigated how sequence variations of A1-LCD, that change the driving force for phase separation, alter the physical properties of the respective condensates. Our results provide a new experimental perspective on the material properties of protein condensates. Robust and quantitative experimental approaches such as the presented ones will be crucial for understanding how the physical properties of biological condensates determine their function and dysfunction.

Details

OriginalspracheEnglisch
Aufsatznummerar154
Seitenumfang15
FachzeitschriftMolecular Biology of the Cell
Jahrgang35
Ausgabenummer12
PublikationsstatusVeröffentlicht - Nov. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4017-6505/work/173054546

Schlagworte