Optical and acoustic plasmons in the layered material Sr2RuO4

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • J. Schultz - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • A. Lubk - , CEOS-Stiftungsprofessur für Elektronenoptik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • F. Jerzembeck - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • N. Kikugawa - , National Institute for Materials Science Tsukuba (Autor:in)
  • M. Knupfer - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • D. Wolf - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • B. Büchner - , Professur für Experimentelle Festkörperphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • J. Fink - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden (Autor:in)

Abstract

The perfect linear temperature dependence of the electrical resistivity in a variety of “strange” metals is a real puzzle in condensed matter physics. For these materials also other non-Fermi liquid properties are predicted or detected. In particular we mention the results derived from holographic theories which conclude that plasmons should be overdamped due to a low energy continuum in the electronic susceptibility. These predictions were supported by electron energy-loss spectroscopy in reflection on cuprates and ruthenates. Here we use electron energy-loss spectroscopy in transmission to study collective charge excitations in the layer metal Sr2RuO4. This metal has a transition from a perfect Fermi liquid below T ≈ 30 K into a “strange” metal phase above T ≈ 800 K. In this compound we cover a complete range between in-phase and out-of-phase oscillations. Outside the classical range of electron-hole excitations, leading to a Landau damping, we observe well-defined plasmons. The optical (acoustic) plasmon due to an in-phase (out-of-phase) charge oscillation of neighbouring layers exhibits a quadratic (linear) positive dispersion. Using a model for the Coulomb interaction of the charges in a layered system, it is possible to describe the range of optical plasmon excitations at high energies in a mean-field random phase approximation without taking correlation effects into account. In contrast, resonant inelastic X-ray scattering data show at low energies an enhancement of the acoustic plasmon velocity due to correlation effects. This difference can be explained by an energy dependent effective mass which changes from ≈ 3.5 at low energy to 1 at high energy near the optical plasmon energy. There are no signs of over-damped plasmons predicted by holographic theories.

Details

OriginalspracheEnglisch
Aufsatznummer4287
FachzeitschriftNature communications
Jahrgang16
Ausgabenummer1
PublikationsstatusVeröffentlicht - 8 Mai 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40341367