ON-OFF neuromorphic ISING machines using Fowler-Nordheim annealers

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Zihao Chen - , Washington University St. Louis (Autor:in)
  • Zhili Xiao - , Washington University St. Louis (Autor:in)
  • Mahmoud Akl - , SpiNNcloud Systems GmbH (Autor:in)
  • Johannes Leugring - , University of California at San Diego (Autor:in)
  • Omowuyi Olajide - , University of California at San Diego (Autor:in)
  • Adil Malik - , Imperial College London (Autor:in)
  • Nik Dennler - , Western Sydney University, University of Hertfordshire (Autor:in)
  • Chad Harper - , University of California at Berkeley (Autor:in)
  • Subhankar Bose - , Washington University St. Louis (Autor:in)
  • Hector A. Gonzalez - , Professur für Hochparallele VLSI-Systeme und Neuromikroelektronik, SpiNNcloud Systems GmbH (Autor:in)
  • Mohamed Samaali - , SpiNNcloud Systems GmbH (Autor:in)
  • Gengting Liu - , SpiNNcloud Systems GmbH (Autor:in)
  • Jason Eshraghian - , University of California at Santa Cruz (Autor:in)
  • Riccardo Pignari - , Politecnico di Torino (Autor:in)
  • Gianvito Urgese - , Politecnico di Torino (Autor:in)
  • Andreas G. Andreou - , Johns Hopkins University (Autor:in)
  • Sadasivan Shankar - , SLAC National Accelerator Laboratory, Stanford Engineering (Autor:in)
  • Christian Mayr - , Professur für Hochparallele VLSI-Systeme und Neuromikroelektronik, Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden) (Autor:in)
  • Gert Cauwenberghs - , University of California at San Diego (Autor:in)
  • Shantanu Chakrabartty - , Washington University St. Louis (Autor:in)

Abstract

We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using a Fowler-Nordheim quantum mechanical tunneling based threshold-annealing process. The core component of NeuroSA consists of a pair of asynchronous ON-OFF neurons, which effectively map classical simulated annealing dynamics onto a network of integrate-and-fire neurons. The threshold of each ON-OFF neuron pair is adaptively adjusted by an FN annealer and the resulting spiking dynamics replicates the optimal escape mechanism and convergence of SA, particularly at low-temperatures. To validate the effectiveness of our neuromorphic Ising machine, we systematically solved benchmark combinatorial optimization problems such as MAX-CUT and Max Independent Set. Across multiple runs, NeuroSA consistently generates distribution of solutions that are concentrated around the state-of-the-art results (within 99%) or surpass the current state-of-the-art solutions for Max Independent Set benchmarks. Furthermore, NeuroSA is able to achieve these superior distributions without any graph-specific hyperparameter tuning. For practical illustration, we present results from an implementation of NeuroSA on the SpiNNaker2 platform, highlighting the feasibility of mapping our proposed architecture onto a standard neuromorphic accelerator platform.

Details

OriginalspracheEnglisch
Aufsatznummer3086
FachzeitschriftNature communications
Jahrgang16
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40164601