One flow through hydrolysis and hydrogenation of semi-industrial xylan from birch (betula pendula) in a continuous reactor—Kinetics and modelling

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Xiaojia Lu - , Åbo Akademi University, Université de Rouen (Autor:in)
  • Paula Junghans - , Technische Universität Dresden (Autor:in)
  • Stephanie Weckesser - , Technische Universität Dresden (Autor:in)
  • Johan Wärnå - , Åbo Akademi University (Autor:in)
  • Gerd Hilpmann - , Professur für Chemische Verfahrens- und Anlagentechnik (CVT) (Autor:in)
  • Rüdiger Lange - , Professur für Chemische Verfahrens- und Anlagentechnik (CVT) (Autor:in)
  • Heather Trajano - , University of British Columbia (Autor:in)
  • Kari Eränen - , Åbo Akademi University (Autor:in)
  • Lionel Estel - , Université de Rouen (Autor:in)
  • Sebastien Leveneur - , Åbo Akademi University, Université de Rouen (Autor:in)
  • Henrik Grénman - , Åbo Akademi University (Autor:in)

Abstract

Xylan obtained from birch (betula pendula) by a novel semi-industrial scale aqueous based method was used for studying the hydrolysis and consecutive hydrolysis-hydrogenation processes in continuous reactors. Dowex 50WX2-100 was chosen as the hydrolysis catalyst based on the results of catalyst screening performed previously in batch reactor. It was also observed to perform well in continuous reactor converting xylan to xylose in high yield under the studied reaction conditions. The influence of several reaction parameters were investigated for optimization. Similar experimental conditions used in the hydrolysis were then applied for studying one flow through hydrolysis and hydrogenation of the semi-industrial xylan. A consecutive catalyst bed consisting of ruthenium on carbon was introduced into the continuous reactor downstream from the hydrolysis bed to hydrogenate monosaccharides to xylitol. Hydrogen was co-fed into the reactor with the xylan solution. Reaction parameters, including temperature, residence time and hydrogen pressure, were varied to maximize the xylitol yield. The developed continuous process was demonstrated to be highly selective and efficient for the valorization of the semi-industrial xylan by yielding over 90% xylitol under optimal experimental conditions. It was noticed, that co-feeding hydrogenation decreased the degradation of monosaccharides during hydrolysis, thus improving the selectivity towards the target product and enabling remarkable process intensification. Moreover, mathematical modelling was performed for the hydrolysis and one flow through hydrolysis and hydrogenation processes. The models take into account the consecutive reaction pathways and the influence of the experimental conditions. Good fits of the model to the experimental data were obtained. The conversion of this novel, well characterized wood-based xylan to produce xylose or xylitol in continuous reactors has not been studied previously. The current work contributes significantly to understanding the processing of real feedstock in one flow through employing consecutive reactions and provides necessary data for process intensification.

Details

OriginalspracheEnglisch
Aufsatznummer108614
FachzeitschriftChemical Engineering and Processing - Process Intensification
Jahrgang169
PublikationsstatusVeröffentlicht - Dez. 2021
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Combined hydrolysis and hydrogenation, Continuous reactor, Increased selectivity, Kinetics, Process intensification, Xylan