On-chip template training for pattern matching by cellular neural network universal machines (CNN-UM)

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Ralf Schönmeyer - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Dirk Feiden - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Ronald Tetzlaff - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

Pattern matching problems using statistical methods generally result in high computational effort. On the other side algorithms based on CNN technology can pro vide efficient new solutions for complex image processing tasks. In various applications template values are determined by an optimization procedure using simulation systems. In this contribution an optimization method directly interacting with a CNN-UM chip will be presented to treat a CNN based pattern matching problem. Thereby a certain binary pattern of an image also comprising other different patterns should betracted. The proposed on-chip training leads to highly adapted templates solving the given tasks in different setups.

Details

OriginalspracheEnglisch
Seiten (von - bis)III514-III517
FachzeitschriftProceedings - IEEE International Symposium on Circuits and Systems
Jahrgang3
PublikationsstatusVeröffentlicht - 2003
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2003
KurztitelISCAS 2003
Dauer25 - 28 Mai 2003
Webseite
BekanntheitsgradInternationale Veranstaltung
StadtBangkok
LandThailand

Externe IDs

ORCID /0000-0001-7436-0103/work/173513949

Schlagworte

ASJC Scopus Sachgebiete