On-Chip Memory Access Reduction for Energy-Efficient Dilated Convolution Processing

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Dilated convolutions have recently become increasingly popular in deep neural networks. However, the inference of these operations on hardware accelerators is not mature enough to reach the efficiency of standard convolutions. Therefore, we extended a dedicated accelerator for dilated convolutions to reduce the number of energy-intensive accesses to the on-chip memory. We achieve this by applying the principle of feature map decomposition to an output-stationary compute array with a strided feature loading. Our solution shows a 50% reduction in memory accesses for an unpadded 3 × 3 kernel and a dilation rate of 9 compared to a recently proposed dilated convolution accelerator. We also support flexible parameter selection for kernel sizes and dilation rates to meet the requirements of modern neural networks. The energy consumption of the additional hardware modules is less than the savings achieved by the reduced memory accesses. This results in a relative energy saving by a factor of 4.77 for dilated convolutions with unpadded 3 × 3 kernels.

Details

OriginalspracheEnglisch
TitelEmbedded Computer Systems: Architectures, Modeling, and Simulation
Redakteure/-innenCristina Silvano, Marc Reichenbach, Christian Pilato
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten478-485
Seitenumfang8
ISBN (elektronisch)978-3-031-46077-7
ISBN (Print)978-3-031-46076-0
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14385 LNCS
ISSN0302-9743

Konferenz

Titel23rd International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
UntertitelArchitectures, Modeling, and Simulation
KurztitelSAMOS XXIII
Veranstaltungsnummer23
Dauer2 - 6 Juli 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtDoryssa Seaside Resort
StadtPythagorion
LandGriechenland

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Accelerator, Decomposition, Dilated Convolution, DNN, On-Chip Memory