On the structure of the domain of a symmetric jump-type dirichlet form
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling-Deny formula. In particular, we obtain suffcient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reected Dirichlet spaces this leads to a simple purely analytic proof that the active reected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reected Dirichlet space.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1-20 |
Seitenumfang | 20 |
Fachzeitschrift | Publications of the Research Institute for Mathematical Sciences = PRIMS |
Jahrgang | 48 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2012 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Jump-type Dirichlet form, Locally shift-bounded kernel, Silverstein extension