On the structure of the domain of a symmetric jump-type dirichlet form

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling-Deny formula. In particular, we obtain suffcient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reected Dirichlet spaces this leads to a simple purely analytic proof that the active reected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reected Dirichlet space.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-20
Seitenumfang20
Fachzeitschrift Publications of the Research Institute for Mathematical Sciences = PRIMS
Jahrgang48
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2012
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Jump-type Dirichlet form, Locally shift-bounded kernel, Silverstein extension