On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung


  • David Grijalva Garces - , Institute of Functional Interfaces (Autor:in)
  • Svenja Strauß - , Institute of Functional Interfaces (Autor:in)
  • Sarah Gretzinger - , Institute of Functional Interfaces (Autor:in)
  • Barbara Schmieg - , Institute of Functional Interfaces (Autor:in)
  • Tomasz Jüngst - , Universitätsklinikum Würzburg (Autor:in)
  • Jürgen Groll - , Universitätsklinikum Würzburg (Autor:in)
  • Lorenz Meinel - , Universitätsklinikum Würzburg (Autor:in)
  • Isabelle Schmidt - , Eberhard Karls Universität Tübingen (Autor:in)
  • Hanna Hartmann - , Eberhard Karls Universität Tübingen (Autor:in)
  • Katja Schenke-Layland - , Eberhard Karls Universität Tübingen (Autor:in)
  • Nico Brandt - , Institute for Applied Materials (Autor:in)
  • Michael Selzer - , MacDiarmid Institute for Advanced Materials and Nanotechnology (Autor:in)
  • Stefan Zimmermann - , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Peter Koltay - , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Alexander Southan - , University of Media Stuttgart (Autor:in)
  • Günter E M Tovar - , University of Media Stuttgart (Autor:in)
  • Sarah Schmidt - , Fraunhofer Institute for Interfacial Engineering and Biotechnology (Autor:in)
  • Achim Weber - , Fraunhofer Institute for Interfacial Engineering and Biotechnology (Autor:in)
  • Tilman Ahlfeld - , Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung (Autor:in)
  • Michael Gelinsky - , Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung (Autor:in)
  • Thomas Scheibel - , Universität Bayreuth (Autor:in)
  • Rainer Detsch - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Aldo R Boccaccini - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Toufik Naolou - , Leibniz Universität Hannover (LUH) (Autor:in)
  • Cornelia Lee-Thedieck - , Leibniz Universität Hannover (LUH) (Autor:in)
  • Christian Willems - , Martin-Luther-Universität Halle-Wittenberg (Autor:in)
  • Thomas Groth - , Martin-Luther-Universität Halle-Wittenberg (Autor:in)
  • Stephan Allgeier - , Karlsruhe Institute of Technology (Autor:in)
  • Bernd Köhler - , Karlsruhe Institute of Technology (Autor:in)
  • Tiaan Friedrich - , Technische Universität München (Autor:in)
  • Heiko Briesen - , Technische Universität München (Autor:in)
  • Janine Buchholz - , Universität Koblenz (Autor:in)
  • Dietrich Paulus - , Universität Koblenz (Autor:in)
  • Anselm von Gladiss - , Universität Koblenz (Autor:in)
  • Jürgen Hubbuch - , Institute of Functional Interfaces (Autor:in)


The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.


PublikationsstatusVeröffentlicht - 11 Okt. 2023

Externe IDs

ORCID /0000-0001-9075-5121/work/146165220
Scopus 85173621383



  • Humans, Bioprinting/methods, Reproducibility of Results, Tissue Scaffolds/chemistry, Biocompatible Materials, Printing, Three-Dimensional, Tissue Engineering/methods