On the reliability of automatic volume delineation in low-contrast [18F]FMISO-PET imaging

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

  • Robert Haase - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie (Autor:in)
  • Michael Andreeff - , Klinik und Poliklinik für Nuklearmedizin (Autor:in)
  • Nasreddin Abolmaali - , OncoRay - National Centre for Radiation Research in Oncology, Institut und Poliklinik für diagnostische und interventionelle Radiologie, Städtisches Klinikum Dresden (Autor:in)

Abstract

Hypoxia is a marker of poor prognosis in malignant tumors independent from the selected therapeutic method and the therapy should be intensified in such tumors. Hypoxia imaging with positron emission tomography (PET) is limited by low contrast to noise ratios with every available tracer. In radiation oncology appropriate delineation is required to allow therapy and intensification. While manual segmentation results are highly dependent from experience and observers condition (high inter- and intra observer variability), threshold- and gradient-based algorithms for automatic segmentation frequently fail in low contrast data sets. Likewise, calibration of these algorithms using phantoms is not useful. Complex computational models such as swarm intelligence-based algorithms are promising tools for optimized segmentation results and allow observer independent interpretation of multimodal and multidimensional imaging data.

Details

OriginalspracheEnglisch
TitelMolecular Radio-Oncology
Redakteure/-innenMichael Baumann, Mechthild Krause, Nils Cordes
Herausgeber (Verlag)Springer Verlag, New York
Seiten175-187
Seitenumfang13
ISBN (elektronisch)978-3-662-49651-0
ISBN (Print)978-3-662-49649-7, 978-3-662-57020-3
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa

Publikationsreihe

ReiheRecent results in cancer research
Band198
ISSN0080-0015

Externe IDs

PubMed 27318687

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Ant colony optimization algorithm, FMISO-PET, Hypoxia imaging, Image analysis, Swarm intelligence, Tumor microenvironment