On the Rank of Abelian Varieties Over Ample Fields
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the Z((p))-module A(K) circle times Z((p)) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 579-586 |
Seitenumfang | 8 |
Fachzeitschrift | International journal of number theory |
Jahrgang | 6 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Mai 2010 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 77952871914 |
---|
Schlagworte
Schlagwörter
- Abelian variety, Ample field, Infinite rank