On the quantification of hydrogen in lithium metal oxides

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Thomas Köhler - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Patrick Reichart - , Universität der Bundeswehr München (Autor:in)
  • Erica Brendler - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Anastasia Vyalikh - , Institut für Festkörper- und Materialphysik, Technische Universität Bergakademie Freiberg (Autor:in)
  • Andre Klostermeier - , Eltra GmbH (Autor:in)
  • Zdravko Siketić - , Ruđer Bošković Institute (Autor:in)
  • Erik Mehner - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Günther Dollinger - , Universität der Bundeswehr München (Autor:in)
  • Hartmut Stöcker - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Dirk C. Meyer - , Technische Universität Bergakademie Freiberg (Autor:in)

Abstract

Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but inconsistent literature data exist about the bulk hydrogen concentration in the lithium metal oxides LiMO3 with M = Nb and Ta. Hydrogen binds to oxygen and forms hydroxyl groups (OH), which can be easily detected optically by FT-IR spectroscopy. However, this method cannot determine an absolute hydrogen concentration. With a reliably characterised concentration reference, a calibration for the fast and non-destructive FT-IR spectroscopy could be obtained. In this study, the hydrogen contents of as-grown and hydrogen-doped congruent and near-stoichiometric LiMO3 crystals were investigated by elastic recoil detection analysis (ERDA), carrier gas hot extraction (CGHE), 1H magic angle spinning nuclear magnetic resonance (1H MAS NMR) and hydrogen microscopy via proton-proton (p-p) scattering. However, not every method is suitable for the investigation of hydrogen in the LiMO3 host lattices. Based on p-p scattering, the A/cH calibration factors for FT-IR spectroscopy can be specified with (4.52 ± 0.58) × 10−17 cm and (6.46 ± 0.96) × 10−17 cm for LiNbO3 and LiTaO3, respectively.

Details

OriginalspracheEnglisch
Seiten (von - bis)21183-21202
Seitenumfang20
FachzeitschriftJournal of Materials Chemistry A
Jahrgang11
Ausgabenummer39
PublikationsstatusVeröffentlicht - 20 Sept. 2023
Peer-Review-StatusJa