On the Limits of Machine Knowledge: Completeness, Recall and Negation in Web-scale Knowledge Bases.

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Simon Razniewski - , Max-Planck-Institut für Informatik (Autor:in)
  • Hiba Arnaout - , Max-Planck-Institut für Informatik (Autor:in)
  • Shrestha Ghosh - , Max-Planck-Institut für Informatik (Autor:in)
  • Fabian M. Suchanek - , Institut Polytechnique de Paris (Autor:in)

Abstract

General-purpose knowledge bases (KBs) are an important component of several data-driven applications. Pragmatically constructed from available web sources, these KBs are far from complete, which poses a set of challenges in curation as well as consumption. In this tutorial we discuss how completeness, recall and negation in DBs and KBs can be represented, extracted, and inferred. We proceed in 5 parts: (i) We introduce the logical foundations of knowledge representation and querying under partial closed-world semantics. (ii) We show how information about recall can be identified in KBs and in text, and (iii) how it can be estimated via statistical patterns. (iv) We show how interesting negative statements can be identified, and (v) how recall can be targeted in a comparative notion.

Details

OriginalspracheEnglisch
Aufsatznummer12
Seiten (von - bis)3175-3177
Seitenumfang3
FachzeitschriftProceedings of the VLDB Endowment
Jahrgang14
Ausgabenummer12
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85117102608
ORCID /0000-0002-5410-218X/work/181861374

Schlagworte